
Computing with Molecules

Luca Cardelli
Microsoft Research

Development in Computational Models

Cambridge 2012-06-17

http://lucacardelli.name

A computational model

• Molecular Soups
o Molecules randomly collide and can change state or

composition.
• Can we compute with that?

o Based on the classical atomic theory of matter
• with Brownian motion
• nothing quantum here

• Related to:
o “In small numbers” (macroscopic systems)

• Process Algebra
• Petri Nets

o “In large numbers” (microscopic systems)
• Population Protocols [Angluin et al.]
• Amorphous Computing [Abelson et al.]
• Swarm Intelligence – Ant Colonies
• Epidemiology
• Chemistry

A notion of algorithm

• Data as populations
o Inputs and outputs are composed of uniform

populations of agents that do not have an identity

o Algorithms ‘emerge’ from the ‘dumb’ interactions of
‘simple’ agents

• In computing
o Mostly explored in discrete or nondeterministic time

• In science and nature
o Mostly explored in stochastic time

o Stochastic because ‘interactions’ typically correspond
to random collisions or chance meetings

A mathematical model

• The underlying model is Continuous-Time Markov
Chains
o Which also underlies chemistry via the Chemical Master Equation

(changes of probabilities of discrete states over continuous time).

• Can be presented discretely, stochastically
o As stochastic Petri nets, stochastic process algebras, etc.

• NOT a probabilistic model
o Probabilities emerge from the stochastic structure (as the underlying

DMC), but are not primary. We are in continuous time and we care
about how long things take.

o Non-determinism exists only in the form of ‘quantitative races’
among possibilities: who is faster is more likely to win, but there is
no pure, timeless, random or probabilistic choice.

o Interleaving rules: no two events (interactions) can ever happen at
the same time in real time.

Basic Results

• The class of functions ‘over individuals’ that are
computable
o Turing machines can be encoded up to an arbitrarily small

uniform error bound. “Approximately Turing-Complete”.
• David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation Computation Computation Computation

with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction Networks. Networks. Networks. Networks. Natural Computing,
2008.

• Luca Cardelli, Gianluigi Zavattaro. Turing Universality of the Biochemical Turing Universality of the Biochemical Turing Universality of the Biochemical Turing Universality of the Biochemical
Ground Form.Ground Form.Ground Form.Ground Form. MSCS 2010.

• Wiedermann et al. …

• The class of predicates ‘over collectives’ that are
‘stably computable’
o Semi-linear predicates (first-order theory of (ℕ,+,<)).
o Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert.

The computational power of population protocols.The computational power of population protocols.The computational power of population protocols.The computational power of population protocols. Distributed
Computing, 2007.

Paradigm

• Stochastic chemistry is the simplest
paradigm for this model
o Finite collections of chemical reactions (with real-

number rates) among a finite set of species.

o Not necessarily preserving mass or energy (assumed
to be freely provided from the ‘outside’).

o Usually restricted to null-, uni-, and bi-molecular
reactions.

• x →r y + y multiply x by 2

• x + y →r y + b compute the majority of populations
y + x →r x + b x and y in log time [Angluin et al.]
b + x →r x + x
b + y →r y + y

Molecular Languages

• Reaction-Based (A + B → C + D) (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A = !c. B) (Process Algebra)
o Reduces combinatorial complexity of models by combining independent

submodels connected by interactions.

• Rule-Based (A{-}:B{p} → A{p}:B{-}) (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing

one to ‘ignore the context’: a rule is a reaction in an unspecified
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Syntactic connections
o The latter two can be translated (to each other and) to the first, but doing so may

introduce an infinite, or anyway extremely large, number of species.

Semantic Connections

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics
(Mass Action Kinetics)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Combinatorial
Explosion

Paradigm Lost

• But chemistry is not a computational science!
o Real chemical reactions just ‘happen’ between real

molecules that exist in nature. We don’t control them.

o Chemists ‘transcribe’ nature and write down ‘its’ reactions.
They do not write their own chemical programs.

• Ok, they often design new molecules, but they do not have ‘full
computational control’ over what those do.

• Similarly electronics was not computational
o Electron exchanges just ‘happen’ in nature.

o Early physicists did not have the ability to program them.

o But now we do!

Paradigm Encoded

• Find some ‘universal molecules’ that can
do ‘what all the other molecules can do’
o By ‘doing something’ here we mean ‘implementing a

chemical kinetics’.

o That is: find a universal class of molecules that can
emulate the kinetics of arbitrary systems of chemical
reactions among real or fictitious molecules, up to
some abstraction (e.g. time dilation).

• Find a way to actually execute molecular
languages, with real molecules.

Computing with DNA

• Computing with molecules was, of course,
the original idea in DNA computing
o Early examples [Adelman] encoded specific

algorithms.

• But only recently people have proposed
‘universal DNA molecules’
o Soloveichik, D., Seelig, G., Winfree, E., DNA DNA DNA DNA as a as a as a as a

Universal Substrate for Chemical Universal Substrate for Chemical Universal Substrate for Chemical Universal Substrate for Chemical kinetics.kinetics.kinetics.kinetics.

DNA

Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Robust, and Long
• DNA in each human cell:

o 3 billion base pairs
o 2 meters long, 2nm thick
o folded into a 6µm ball
o 750 MegaBytes

• A huge amount for a cell
o Every time a cell replicates it has to

copy 2 meters of DNA reliably.
o To get a feeling for the

scale disparity, compute:

• DNA in human body
o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

• DNA in human population
o 20 million light years long

Andromeda Galaxy
2.5 million light years away

DNA wrapping into chromosomes
wehi.edu.au

Natural DNA Operation

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel

processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase II:
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.

Unnatural DNA Operation

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Nanoscale Control SystemsNanoscale Control SystemsNanoscale Control SystemsNanoscale Control Systems

Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene
expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially
evolved DNA molecules that stick
to other molecules (highly
selectively).

Target molecule

Constructing
Sensing

Constructing Actuating

Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking

Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers
DNA walkers

Computing

• Sensors and Actuators
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing

• Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)

“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running
‘separately’

(Nano(Nano(Nano(Nano----engineering)engineering)engineering)engineering)

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

RNA computation in dead cells

• Using RNA Hybridization Chain Reaction
for imaging of mRNA expression.
o The programmability of orthogonal RNA reactions

enables spatial imaging with 5 simultaneous targets.

25

RNA computation in live cells

Computing with

DNA Strand Displacement

DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of

matter and information at the molecular level.

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.

• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Computation

by DNA

Strand Displacement

Four-Domain Architecture
No “garbage collection”
(active waste removal)

Three-Domain Architecture

DNA Computing and Molecular Programming.
15th International Conference, DNA 15,
LNCS 5877, Springer 2009, pp 12-24.

With garbage collection
(separate pass)

“Lulu’s Trouble”

(from D.Soloveichik)

DCM 2010

• Looking for a simple process algebra for
strand displacement
o For manual or automated analysis or correctness of

strand displacement ‘programs’.

o Had to be simple (or you could not analyze it). Hence
looking for a simpler strand displacement scheme.

o Had to be an algebra, hence computation could not
leave garbage around, or nothing would commute.

• The technology was to be constrained by
the theory

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Transducer x→y

Join x+y→z

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

Experiments

Yuan-Jyue Chen and Georg Seelig
U.Washingon.

Two-domain gate

for X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y

An Accident of Simplicity
• Earlier architectures had ‘secondary structure’,

which is ‘unnatural’:
o It requires synthetic single-stranded DNA that is then

assembled to form the desired structures.
o Synthetic DNA has maximum length and quality problems (a

fixed probability of synthesis error at each position, limiting
size to about 200 bases).

• The two-domain architecture is (almost)
ordinary biological DNA
o Just double-stranded (with nicks), hence it can be produced

biologically.
o Biological DNA has much better quality and practically no

length restriction: bacteria are so much better than we are at
making it.

• Makes a new manufacturing technology possible
o Gate-laden plasmids (circular DNA) are inserted into

bacteria, who kindly produce large quantities of them
overnight.

o We then chop them up into gates and introduce the nicks via
enzymes.

Yuan-Jyue Chen, Neil Dalchau, Cezanne
Camacho, Matt Olson, David Soloveichik,
Andrew Phillips, Luca Cardelli, and Georg Seelig.

DNA Programming

Strand Displacement Language

Formal Syntax and Semantics

69
Lakin et al. Royal Society Interface, 2011

Compiling Chemistry to DNA (X→Y)

70

def R1x1(N,x,y) =
new a
(N* <t^ a>
| N* <y t^>
| N* t^*:[x t^]:[a t^]:[a]
| N* [x]:[t^ y]:[t^ a]:t^*
)

def Species(N,x) =
N*<t^ x>

Input X

Output Y

Model-Checking Compilation (X→Y)

Transducer State Space (Species(1,x) | R1x1(1,x,y))

71

Stochastic Model Checking

PRISM results for sequential transducers

72

Scaling Strand Displacement Circuits

73

“In addition to
biochemistry laboratory
techniques, computer
science techniques were
essential.”

“Computer simulations of
seesaw gate circuitry
optimized
the design and correlated
experimental data.”

Turing-Powerful DNA Computers

Encoding a Stack
Encoding state transitions

74

Lakin & Phillips, DNA17 2011

Model-Checking a DNA Ripple Carry Adder

Localised circuits
Hairpins tethered to origami

o Increased speed

o Reduced interference

75

Chandran,Gopalkrishnan,Phillips,Reif. DNA Computing, 2011

Conclusions

2012-06-18Luca Cardelli 77

A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computers
SoftwareSoftwareSoftwareSoftware

systematic
manipulation
of information

Computer
programming

20th century

systematic
manipulation

of matter
Molecular

programming
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994

Structural DNA, 1982

MatterwareMatterwareMatterwareMatterware????????

Acknowledgments

• Microsoft Research
o Andrew Phillips

• Languages and tools for DNA strand displacement.

• Bologna
o Pierluigi Zavattaro

• Computational power of ‘chemical’ process algebras.

o Cosimo Laneve
• Reversibility in population models.

• Aalborg
o Radu Mardare

• Stochastic process algebra and logic.

• Caltech
o Erik Winfree & Winfree Lab

• DNA strand displacement as a computational method and technology.

o David Soloveichik
• The Programming Language of Chemical Kinetics.

• U.Washington
o Georg Seelig, Yuan-Jyue Chen

• Manufacturing two-domain gates.

