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A computational model

• Molecular Soups
o Molecules randomly collide and can change state or 

composition. 
• Can we compute with that?

o Based on the classical atomic theory of matter
• with Brownian motion
• nothing quantum here

• Related to:
o “In small numbers” (macroscopic systems)

• Process Algebra
• Petri Nets

o “In large numbers” (microscopic systems)
• Population Protocols [Angluin et al.]
• Amorphous Computing [Abelson et al.]
• Swarm Intelligence – Ant Colonies
• Epidemiology
• Chemistry



A notion of algorithm

• Data as populations
o Inputs and outputs are composed of uniform 

populations of agents that do not have an identity

o Algorithms ‘emerge’ from the ‘dumb’ interactions of 
‘simple’ agents

• In computing
o Mostly explored in discrete or nondeterministic time

• In science and nature
o Mostly explored in stochastic time

o Stochastic because ‘interactions’ typically correspond 
to random collisions or chance meetings



A mathematical model

• The underlying model is Continuous-Time Markov 
Chains
o Which also underlies chemistry via the Chemical Master Equation 

(changes of probabilities of discrete states over continuous time).

• Can be presented discretely, stochastically
o As stochastic Petri nets, stochastic process algebras, etc.

• NOT a probabilistic model
o Probabilities emerge from the stochastic structure (as the underlying 

DMC), but are not primary. We are in continuous time and we care 
about how long things take.

o Non-determinism exists only in the form of ‘quantitative races’ 
among possibilities: who is faster is more likely to win, but there is 
no pure, timeless, random or probabilistic choice.

o Interleaving rules: no two events (interactions) can ever happen at 
the same time in real time.



Basic Results

• The class of functions ‘over individuals’ that are 
computable 
o Turing machines can be encoded up to an arbitrarily small 

uniform error bound. “Approximately Turing-Complete”.
• David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation Computation Computation Computation 

with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction with Finite Stochastic Chemical Reaction Networks. Networks. Networks. Networks. Natural Computing, 
2008.

• Luca Cardelli, Gianluigi Zavattaro. Turing Universality of the Biochemical Turing Universality of the Biochemical Turing Universality of the Biochemical Turing Universality of the Biochemical 
Ground Form.Ground Form.Ground Form.Ground Form. MSCS 2010. 

• Wiedermann et al. …

• The class of predicates ‘over collectives’ that are 
‘stably computable’ 
o Semi-linear predicates (first-order theory of (ℕ,+,<)).
o Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 

The computational power of population protocols.The computational power of population protocols.The computational power of population protocols.The computational power of population protocols. Distributed 
Computing, 2007.



Paradigm

• Stochastic chemistry is the simplest 
paradigm for this model
o Finite collections of chemical reactions (with real-

number rates) among a finite set of species.

o Not necessarily preserving mass or energy (assumed 
to be freely provided from the ‘outside’).

o Usually restricted to null-, uni-, and bi-molecular 
reactions.

• x →r y + y multiply x by 2

• x + y →r y + b compute the majority of populations 
y + x →r x + b x and y in log time [Angluin et al.]
b + x →r x + x
b + y →r y + y



Molecular Languages

• Reaction-Based  (A + B  → C + D)  (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A  =  !c. B)  (Process Algebra)
o Reduces combinatorial complexity of models by combining independent 

submodels connected by interactions.

• Rule-Based (A{-}:B{p}  → A{p}:B{-})  (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing 

one to ‘ignore the context’: a rule is a reaction in an unspecified 
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Syntactic connections
o The latter two can be translated (to each other and) to the first, but doing so may 

introduce an infinite, or anyway extremely large, number of species.



Semantic Connections
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These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Combinatorial 
Explosion



Paradigm Lost

• But chemistry is not a computational science!
o Real chemical reactions just ‘happen’ between real 

molecules that exist in nature. We don’t control them.

o Chemists ‘transcribe’ nature and write down ‘its’ reactions. 
They do not write their own chemical programs.

• Ok, they often design new molecules, but they do not have ‘full 
computational control’ over what those do.

• Similarly electronics was not computational
o Electron exchanges just ‘happen’ in nature.

o Early physicists did not have the ability to program them.

o But now we do!



Paradigm Encoded

• Find some ‘universal molecules’ that can 
do ‘what all the other molecules can do’
o By ‘doing something’ here we mean ‘implementing a 

chemical kinetics’.

o That is: find a universal class of molecules that can 
emulate the kinetics of arbitrary systems of chemical 
reactions among real or fictitious molecules, up to 
some abstraction (e.g. time dilation).

• Find a way to actually execute molecular 
languages, with real molecules.



Computing with DNA

• Computing with molecules was, of course, 
the original idea in DNA computing 
o Early examples [Adelman] encoded specific 

algorithms.

• But only recently people have proposed 
‘universal DNA molecules’
o Soloveichik, D., Seelig, G., Winfree, E., DNA DNA DNA DNA as a as a as a as a 

Universal Substrate for Chemical Universal Substrate for Chemical Universal Substrate for Chemical Universal Substrate for Chemical kinetics.kinetics.kinetics.kinetics.



DNA



Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine



Robust, and Long
• DNA in each human cell:

o 3 billion base pairs
o 2 meters long, 2nm thick
o folded into a 6µm ball
o 750 MegaBytes

• A huge amount for a cell
o Every time a cell replicates it has to

copy 2 meters of DNA reliably.
o To get a feeling for the 

scale disparity, compute:

• DNA in human body
o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

• DNA in human population
o 20 million light years long

Andromeda Galaxy
2.5 million light years away

DNA wrapping into chromosomes
wehi.edu.au



Natural DNA Operation

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel 

processing)

In Bacteria: 1000 nucleotides/second 
(higher error rate)

DNA transcription in real time

RNA polymerase II: 
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.



Unnatural DNA Operation

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Nanoscale Control SystemsNanoscale Control SystemsNanoscale Control SystemsNanoscale Control Systems



Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene 
expression by adenine- and guanine-sensing mRNAs. 
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially 
evolved DNA molecules that stick 
to other molecules (highly 
selectively).

Target molecule



Constructing
Sensing

Constructing Actuating

Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking 



Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers 
DNA walkers



Computing

• Sensors and Actuators 
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing



• Using bacterial machinery (e.g.) as the hardware. 
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)



“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no 
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running 
‘separately’

(Nano(Nano(Nano(Nano----engineering)engineering)engineering)engineering)



Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing



RNA computation in dead cells 

• Using RNA Hybridization Chain Reaction 
for imaging of mRNA expression.
o The programmability of orthogonal RNA reactions 

enables spatial imaging with 5 simultaneous targets.   



25

RNA computation in live cells 



Computing with

DNA Strand Displacement



DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of 

matter and information at the molecular level. 

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.



• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG



Short Domains

t

t

t

Reversible Hybridization



Long Domains

x

x
x

Irreversible Hybridization



Strand Displacement

t x

xt

“Toehold Mediated”



Strand Displacement

xt

Toehold Binding



Strand Displacement

xt

Branch Migration



Strand Displacement

xt

Displacement



Strand Displacement

xt

x

Irreversible release



t

Bad Match

x

x

y

zt



t

Bad Match

x y

z

x



t

Bad Match

x y

z

x



xt

Bad Match

y

z

Cannot proceed
Hence will undo



Computation 

by DNA 

Strand Displacement



Four-Domain Architecture
No “garbage collection” 
(active waste removal)



Three-Domain Architecture

DNA Computing and Molecular Programming. 
15th International Conference, DNA 15, 
LNCS 5877, Springer 2009, pp 12-24. 

With garbage collection 
(separate pass)



“Lulu’s Trouble”

(from D.Soloveichik)



DCM 2010

• Looking for a simple process algebra for 
strand displacement
o For manual or automated analysis or correctness of 

strand displacement ‘programs’.

o Had to be simple (or you could not analyze it). Hence 
looking for a simpler strand displacement scheme.

o Had to be an algebra, hence computation could not 
leave garbage around, or nothing would commute.

• The technology was to be constrained by 
the theory



Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gates



t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input



Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!



Transducer x→y

x

t a

t t a t a x t y t a t

y t



Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste



Transducer x→y

xt t a t a x t y t a t

y t

x t



Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.



Transducer x→y

t axt a x t y t a t

y t

x t

t



Transducer x→y

t a

a tt axt a x t y

y t

x t

t



Transducer x→y

t a

a tt axt a x t y t

x t

t



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t



Transducer x→y

t y

t a

a tt axt a x y tt

Output

t



Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t



Transducer x→y

x

t y

t a tt axt a y tx t

Output



Transducer x→y

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source. 



Transducer x→y



Join x+y→z



General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.



Experiments

Yuan-Jyue Chen and Georg Seelig 
U.Washingon.

Two-domain gate 

for  X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y



An Accident of Simplicity
• Earlier architectures had ‘secondary structure’, 

which is ‘unnatural’:
o It requires synthetic single-stranded DNA that is then 

assembled to form the desired structures.
o Synthetic DNA has maximum length and quality problems (a 

fixed probability of synthesis error at each position, limiting 
size to about 200 bases).

• The two-domain architecture  is (almost) 
ordinary biological DNA
o Just double-stranded (with nicks), hence it can be produced 

biologically.
o Biological DNA has much better quality and practically no 

length restriction: bacteria are so much better than we are at 
making it.

• Makes a new manufacturing technology possible
o Gate-laden plasmids (circular DNA) are inserted into 

bacteria, who kindly produce large quantities of them 
overnight.

o We then chop them up into gates and introduce the nicks via 
enzymes.

Yuan-Jyue Chen, Neil Dalchau, Cezanne 
Camacho, Matt Olson, David Soloveichik, 
Andrew Phillips, Luca Cardelli, and Georg Seelig.



DNA Programming



Strand Displacement Language



Formal Syntax and Semantics

69
Lakin et al. Royal Society Interface, 2011



Compiling Chemistry to DNA (X→Y)

70

def R1x1(N,x,y) =
new a
( N* <t^ a> 
| N* <y t^> 
| N* t^*:[x t^]:[a t^]:[a]
| N* [x]:[t^ y]:[t^ a]:t^*
)

def Species(N,x) = 
N*<t^ x> 

Input X

Output Y



Model-Checking Compilation (X→Y) 

Transducer State Space (Species(1,x) | R1x1(1,x,y))

71



Stochastic Model Checking

PRISM results for sequential transducers

72



Scaling Strand Displacement Circuits

73

“In addition to 
biochemistry laboratory 
techniques, computer 
science techniques were 
essential.”

“Computer simulations of
seesaw gate circuitry 
optimized
the design and correlated 
experimental data.”



Turing-Powerful DNA Computers

Encoding a Stack
Encoding state transitions

74

Lakin & Phillips, DNA17 2011

Model-Checking a DNA Ripple Carry Adder 



Localised circuits
Hairpins tethered to origami

o Increased speed

o Reduced interference

75

Chandran,Gopalkrishnan,Phillips,Reif. DNA Computing, 2011



Conclusions
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A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computers
SoftwareSoftwareSoftwareSoftware

systematic
manipulation 
of information

Computer 
programming          

20th century

systematic 
manipulation

of matter
Molecular 

programming 
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994 

Structural DNA, 1982 

MatterwareMatterwareMatterwareMatterware????????
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