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A computational model

Molecular Soups

o Molecules randomly collide and can change state or
composition.
« Can we compute with that?
o Based on the classical atomic theory of matter
« with Brownian motion
« nothing quantum here

Related to:

o “In small numbers” (macroscopic systems)
* Process Algebra
* Petri Nets
o “In large numbers” (microscopic systems)
« Population Protocols [Angluin et al.]
Amorphous Computing [Abelson et al.]
Swarm Intelligence - Ant Colonies
Epidemiology
Chemistry



A notion of algorithm

L

« Data as populations

o Inputs and outputs are composed of uniform
populations of agents that do not have an identity

o Algorithms ‘emerge’ from the ‘dumb’ interactions of
‘simple’ agents
* In computing
o Mostly explored in discrete or nondeterministic time

 |[n science and nature

o Mostly explored in stochastic time

o Stochastic because ‘interactions’ typically correspond
to random collisions or chance meetings



A mathematical model

L

'+ The underlying model is Continuous-Time Markov
Chains

o Which also underlies chemistry via the Chemical Master Equation
(changes of probabilities of discrete states over continuous time).

« Can be presented discretely, stochastically
o As stochastic Petri nets, stochastic process algebras, etc.

« NOT a probabilistic model

o Probabilities emerge from the stochastic structure (as the underlying
DMC), but are not primarK. We are in continuous time and we care
about how long things take.

o Non-determinism exists only in the form of ‘quantitative races’
among possibilities: who is faster is more likely to win, but there is
no pure, timeless, random or probabilistic choice.

o Interleaving rules: no two events (interactions) can ever happen at
the same time in real time.



Basic Results

L

» The class of functions ‘over individuals’ that are

computable

o Turing machines can be encoded up to an arbitrariIY small
uniform error bound. “Approximately Turing-Complete”.

« David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation
\év(i)tOhSFinite Stochastic Chemical Reaction Networks. Natural Computing,

« Luca Cardelli, Gianluigi Zavattaro. Turing Universality of the Biochemical
Ground Form. MSCS 2010.

« Wiedermann et al. ...

« The class of predicates ‘over collectives’ that are
‘stably computable’

o Semi-linear predicates (first-order theory of (N, +,<)).

o Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert.
The computational power of population protocols. Distributed
Computing, 2007.



Paradigm

L

-« Stochastic chemistry is the simplest
paradigm for this model

o Finite collections of chemical reactions (with real-
number rates) among a finite set of species.

o Not necessarily preserving mass or energy (assumed
to be freely provided from the ‘outside’).

o Usually restricted to null-, uni-, and bi-molecular

reactions.
* X > ¥Y+Yy multiply x by 2
e X+y—> y+b compute the majority of populations
Yy+X—>.X+Db x and y in log time [Angluin et al.]

b+ X—>, X+ X
b+y—y+y



Molecular Languages

Reaction-Based (A + B — C + D) (Chemistry)
o Limited to finite set of species (no polymerization)
o Practically limited to small number of species (no run-away complexation)

Interaction-Based (A = !c. B) (Process Algebra)

o Reduces combinatorial complexity of models by combining independent
submodels connected by interactions.

Rule-Based (A{-}:B{p} — A{p}:B{-}) (Logic, Graph Rewriting)

o Further reduces model complexity by describing molecular state, and by allowing
one to ‘ignore the context’: a ru/eis a reaction in an unspecified
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

Syntactic connections

o The latter two can be translated (to each other and) to the first, but doing so may
introduce an infinite, or anyway extremely large, number of species.



Semantic Connections

Combinatorial
Explosion

Continuous-state Semantics

(Mass Action Kinetics)

t

Continuous
Chemistry

H

Discrete
Chemistry

Process
Algebra

CTMC

CTMC

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)
L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Paradigm Lost

L

« But chemistry /s nota computational science!

o Real chemical reactions just ‘happen’ between real
molecules that exist in nature. We don’t control them.

o Chemists ‘transcribe’ nature and write down ‘its’ reactions.
They do not write their own chemical programs.

« Ok, they often design new molecules, but they do not have ‘full
computational control’ over what those do.

« Similarly electronics was not computational

o Electron exchanges just ‘happen’ in nature.
o Early physicists did not have the ability to program them.
o But now we do!



Paradigm Encoded

L _I

e Find some ‘universal molecules’ that can
do ‘what all the other molecules can do’

o By ‘doing something’ here we mean ‘implementing a
chemical kinetics’.

o That is: find a universal class of molecules that can
emulate the kinetics of arbitrary systems of chemical
reactions among real or fictitious molecules, up to
some abstraction (e.g. time dilation).

A

* Find a way to actually execute molecular
languages, with real molecules.



Computing with DNA

L

« Computing with molecules was, of course,
the original idea in DNA computing

o Early examples [Adelman] encoded specific
algorithms.

« But only recently people have proposed
‘universal DNA molecules’

o Soloveichik, D., Seelig, G., Winfree, E., DNA as a
Universal Substrate for Chemical kinetics.






DNA

wehi.edu.au
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GC Base Pair

Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Interactive DNA Tutorial

(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

. Sequence of Base Pairs (GACT alphabet)



Robust,

DNA in each human cell:
3 billion base pairs

2 meters long, 2nm thick
folded into a 6um ball

750 MegaBytes

@)
@)
@)
@)

A huge amount for a cell

and Long

o Every time a cell replicates it has tc

copy 2 meters of DNA reliably.

o To Iget a feeling for the
scale disparity, compute:

DNA in human body

o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

DNA in human population
o 20 million light years long

€

DNA wrappmg into chromosomes

wehi.edu.au

Andromeda Galaxy
2.5 million light years away



Natural DNA Operation

"« DNA can support structural and computational complexity.

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel
processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase Il:
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv



Unnatural DNA Operation

Sensing Nanoscale Control Systems
o Reacting to forces
o Binding to molecules
Actuating

o Releasing molecules
o Producing forces

Constructing

o Chassis
o Growth

Computing
o Signal Processing
o Decision Making

Nucleic Acids can do all this.
And interface to biology.

€



Sensing

Aptamers: natural or artificially
evolved DNA molecules that stick

to other molecules (highly
selectively).

Adenine riboswitch aptamer

Structural basis for discriminative regulation of gene
expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41.



Constructing

L

Crosslinking

Bave pair

Chengde Mao, Purdue Andrew Turberfield, Oxford

Folding DNA into Twisted and Curved Nanoscale Shapes

Hendrik Dietz, Shawn M. Douglas, & William M. Shih
Science, 325725730, 7 August 2009.




DNA tweezers

Bernard Yurke, Boise State

Actuating

DNA walkers
oA

Track



Computing

 Sensors and Actuators
at the 'edge’ of the system

o They can use disparate technologies and phenomena

« Computation in the 'kernel' of the system

« Compositionality in the kernel

o The components should use uniform inputs and outputs
o The components should be ‘computationally complete’



‘Embedded” Computing

(Synthetic Biology) -

Using bacterial machinery (e.g.) as the hardware. \
Using embedded gene networks as the software.

MIT Registry of Standard Biological Parts

GenoCAD | f“ﬂz@ﬂ@_ (0010 )~ b0013 =

o Meaningful sequences [Cai et al.]
r0040:prom; c0034:rbs; c0040:pcr; b0O015:ter

GEC |
o [Pedersen & Phillips] J 9__[ . @
‘2\-"' I

fj-ﬂ{i‘)-é—r - _% -éw-

prom<neg (C)>; rbs; pcr<codes(A)>; ter;
prom<neqg (A)>; rbs; pcr<codes(B)>; ter;
prom<neqg (B)>; rbs; pcr<codes(C)>; ter

€1 _I



"Autonomous” Computing
y (Nano-engineering)-
* Mix & go \
o All (or most) parts are synthesized
o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

« Self-assembled and self-powered

o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running
‘separately’



Curing

A doctor in each cell

Molecular
Output

Programmable
Computer

plasma
membrane

Fig. 1 Medicine in 2050: “Doctor in a Cell’ Ehud Shaplro "Molecules and

Rivka Adar -

Kobi Benenson computation
Gregory Linshitz

Aviv Regev

William Silverman



" RNA computation in dead cells |

A

« Using RNA Hybridization Chain Reaction
for imaging of mRNA expression.

o The programmability of orthogonal RNA reactions
enables spatial imaging with 5 simultaneous targets.

THE PIERCE LAB

nature

California Institute of Technology

biotechnology

Engineering Molecular Devices

Small conditional RNAs for

detection, transduction, nature.com » journal home » archive » issue » research » letter » abstract
amplification, logic,
locometion, readout and
regulation \“ ARTICLE PREVIEW
@ 2 # view full access options »
5y

Algorithms Technologies

Programmable in situ amplification for multiplexed imaging
of mMRNA expression

Harry M T Choi, Joann ¥ Chang, Le A Trinh, Jennifer E Padilla, Scott E Fraser & Niles A Pierce

Affiliations | Contributions | Corresponding author

Nature Biotechnology 28, 1208-1212 (2010) | doi:10.1038/nbt. 1652
Received 28 June 2010 | Accepted 24 September 2010 | Published online 31 October 2010



RNA computation in live cells

Selective cell death mediated
by small conditional RNAs

Suvir Venkataraman®, Robert M. Dirks*®, Christine T. Ueda® and Niles A. Pierce®'

Small conditional [ Cancer call Diagnosis Machanical transduction Tresatrnart

RMAs a’
i o Ju; M
=. F , E“ | b.‘ 7 b" " owow
= |;. Diagnosis > Treatment domain

{ b=~t" bigb* > M — amam —_— —_—
at ¢
' A B mRANA
cancer Marker initiatas small conditional RMAs Micked dsRMNA paymer activatas
i markear chain reaction propagate chain reaction immune response to induce call death

PNAS | September 28, 2010
25



Computing with
DNA Strand Displacement




DNA Computing

L

« Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.
o Not necessarily using genes or producing proteins.

« For general ‘molecular programming’

o To precisely control the organization and dynamics of
matter and information at the molecular level.

o To interact algorithmically with biological entities.
o The use of DNA is “accidental”. no genes involved.
o In fact, no material of biological origin.

L €1



Domains

Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

X y Z

l.e., differently named domains must not hybridize:
With each other

With each other’s complement

With subsequences of each other

With concatenations of other domains (or their complements)
Etc.

O O O O O

Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.



Short Domains

—_—
t

—
t
t ' ' S

e

Reversible Hybridization



Long Domains

A
X
D

Irreversible Hybridization

X
N —



Strand Displacement

“Toehold Mediated”



Strand Displacement

__

t X
<

Toehold Binding



Strand Displacement

Branch Migration



Strand Displacement

Displacement



Strand Displacement

Irreversible release



Bad Match

t X Z
—_— S
t X y



Bad Match



Bad Match



Bad Match

Cannot proceed
Hence will undo



Computation
by DNA

Strand Displacement




Four-Domain Architecture

No “garbage collection”

A (active waste removal)

TH
; 11
species
identifier " 4/ Y, s
R — q; ’ 3 23
» 1T 2 3 + 2 3 7 li N + 2 2 o
=% Eoo9w 3%
X g, 2* 3 lg, 2° 3 0,
1 1
G waste
B 6 9 species species
5 " _/3/' ) 2 , 0 4 11 7 identifier identifier
2 3 10 4 17 10 4 | 7 Hrmax . f ' f J
——s m;.--,ﬁm o IO + 0 10 S 60+ 117 8 9
3w 10% 4% []#T# 3* 10% 4% [1* T#
O T, waste X2 X3

DNA as a universal substrate for chemical kinetics

David Soloveichik®', Georg Seelig®”’', and Erik Winfree“'

PNAS | March 23, 2010 | vol. 107 | no. 12 | 5393-5398

A



Three-Domain Architecture

With garbage collection -

_ Y (separate pass)
(s
X
G -»
a
® ' -
X
Xp Vi) ) G Xt Xb a ’ C a
A —:‘T”‘,,,”Hb 11-|-|-|-|—|+ lIILJllIIJ’I[JIlIIIl[L’
Xt Xp~ Yeo ab Lot Xt oyt ak | X Xt oy at
a fresh; x;, generic y 3 ' '
t
X | Xy—y | @ ———

Strand Algebras for DNA Computing

Luca Cardelli

DNA Computing and Molecular Programming.
15th International Conference, DNA 15,
LNCS 5877, Springer 2009, pp 12-24.



“Lulu’s Trouble”

B’ Tf

(from D.Soloveichik)



| DCM 2010

« Looking for a simple process algebra for

strand displacement

o For manual or automated analysis or correctness of
strand displacement ‘programs’.

o Had to be simple (or you could not analyze it). Hence
looking for a simpler strand displacement scheme.

o Had to be an a/gebra, hence computation could not
leave garbage around, or nothing would commute.

« The technology was to be constrained by
the theory



Two-Domain Architecture

L

. Signals: 1 toehold + 1 recognition region

Garbage collection

ﬁ 1] H = ”
built into” the gates

t X

« Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

Two-Domain DNA Strand Displacement

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
| Cardelli Developments in Computational Models (DCM 2010).
uca Laraeil EPTCS 25, 2010, pp. 33-47. May 2010.

L €1



Transducer x—y

Input



Transducer x—y

Input
ﬁ
T X

# ﬁ

t a y ot
#*
t x t a t a X t y t a t
——

Built by self-assembly!

ta is a private signal (a different ‘a’ for each xy pair)



Transducer x—y

# ﬁ
t a y ot
t x t a t a X t y t a t

——



Transducer x—y

Active
waste
t
# #
t a Y
* *



Transducer x—y

#
X ot

ﬁ

y ot
t x t a t a X t y t a t

——



Transducer x—y

#

X ot

ﬁ ﬁ

a t y ot
t x t a t a X t y t a t
——

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x—y

—

#

—



Transducer x—y

# #
X 1 t a
ﬁ
y ot
t x t a t a X t vy a t

——



Transducer x—y



Transducer x—y

# ﬁ

X i t a
Output
ﬁ
t vy

t x t a t a X t y t a t

.5 g —
Here is our output ty signal.

But we are not done yet:
1)We need to make the output irreversible.

2) We need to remove the garbage.
We can use (2) to achieve (1).

€



Transducer x—y



Transducer x—y



Transducer x—y

d

——



Transducer x—y



Transducer x—y

A A
a X
Output
#
t vy
* *

——



Transducer x—y

Output
t vy

Done.

N.B. the gate is consumed: it is the energy source.









General nxm Join-Fork

« Easily generalized to 2+ inputs (with 1+ collectors).
« Easily generalized to 2+ outputs.

£t w t oy b t
—— — — .
t x t a c t z t
— —— —— — — e — — o —
t w t x t v t a t a w t ¢ t b t =z &t a ¢t
t ¢ x t t by ot
e Zm— — gpe— —

Figure 9: 3-Join J,,.. | tw | x | ty — tz: initial state plus inputs tw, 7x, ty.



Experiments

Two-domain gate 10 —
for X+Y — Y+B al v
= 1x
£ 6}
X+Y->Y+B 5 0.2x
35C 2 4 0.1x
=
Ix =50nM
© 2 0x
o
OD 5 10
hours
Yuan-Jyue Chen and Georg Seelig _LGE e
U.Washingon. e X,
Catalyst Y
Iraeadout +’ng

1.5x

1.5x%

1x
Ox, 0.05x,0.1x,0.2x,0.3x, 1x
2%
4

3x



An Accident of Simplicity

Earlier architectures had ‘secondary structure’,
which is ‘unnatural’: s 5 %
o It requires synthetic single-stranded DNA that is then 10 4 ﬁ E] P o
assembled to form the desired structures. jrininn gy |

o Synthetic DNA has maximum length and quality problems (a 3% 100 .4% [1epe
fixed probability of synthesis error at each position, limiting T;
size to about 200 bases).

The two-domain architecture is (almost) — —
ordinary biological DNA X L
o Just double-stranded (with nicks), hence it can be produced T T y T 2 ¢t a
biologically. - - = = =
o BioIo%icaI DNA has much better quality and practically no
length restriction: bacteria are so much better than we are at
making it.
& e® [ Plasmid aé"?s;
. . :e NG \ ) Orp,
Makes a new manufacturing technology possible _‘/ = )
o Gate-laden plasmids (circular DNA) are inserted into o 82
bacteria, who kindly produce large quantities of them 33
overnight. == m

o We then chop them up into gates and introduce the nicks via

Q\ $

enzymes. &N\ G S
Yuan-Jyue Chen, Neil Dalchau, Cezanne VU — @ °
Camacho, Matt Olson, David Soloveichik, Extract
Andrew Phillips, Luca Cardelli, and Georg Seelig. plasmid



DNA Programming




“Strand Displacement Language

L

-

Examples: | v | [ Compile | [_Simulate | | Analyse | Pause Compilation: | Default v | Options: [ v | Simulation: [_Deterministic v | View: [ v_ License Install
Code DNA Input Compilation | Simulation | Analysis
Jlljlﬂ Qﬁl% % IHQIQSIX LAk - Species Reactions Graph Text Domains SBML
def bind = kt*1.8e-9 (* fnM/s *) - -
def unbind = kt*exp DeltaG_over_RT (* /s *) i
new t@bind,unbind
new ubind,unbind +
new f180.8,8.@
X t A u a t X E ; t X L Y u a
def onex = 50.8 = X * Y ut at B aXT B Y aur oat
{(Fx+y-ry+z*)
def Cat(MN, x, vy, z) =
Sk * * A A A +
e e s v Cx va e x :
JSEN) * [a]:[E ][t y]iund H
| (2.8%N) * <u™ a> | i S v Ml T T XE AT YE ur oat
| (2.8%N) * <z t~>
]
def Rep(M,x,fl) = *
EN) = pos. A
({3.8*N) tAe: [x]<F1N>) t X Y u a t Y E ; t X t iy i b, @
* * * * = * e * * =
( onex * <Calibration: v 3 ! v ou 2 L X t Y u -
| Cat(onex,X,Y,B)
| Rep(onex,B,f11)
| onex * <t™ X>
| onex * <t~ ¥> *
t X t Y u a t X t Y a Y u
) L H .
X - Yy ut a* tf X 't Yr ut at
E J License Install
il J 4 -
] | »
Ready Ln 34 Col16 Ch1s INS |_| 100%
[Show all|Hide all| = <Calibration> |= <B fl1">
X t Y u a = Fima)
F o v e e 0= S
u <Calibration>
45 D \<Bﬂl"‘>
X t B t ¥ ' ’
X* B BT B Y 07
35—
B fiL 1]] 30
T 8t
25-
20—
Calibration
L g
10-
e
5
P
B4 T R e R N P R R IR e s PSR SR ] I R
- o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A



Formal Syntax and Semantics

D syntax description
M N Long Domain
N~ Short domain
s M Domain
M* Complement Domain
S1 82 Concatenation of 81 and 82
L,R | _ Empty Concatenation
s Domain Concatenation
syntax description
A <8 Upper strand with
5 domain concatenation 3
{s} Lower strand with
s domain concatenation 8
G {L*}<L>[S]<R>{R*} Double stranded
< LS complex [S] with
s overhanging single
/st strands <L>, <R> and
e * 1wy, R}
G1:G2 Gates joined along a
lower strand
G1::62 Gates joined along an
upper strand
D A Strand A
G Gate G
D1 | D2 Parallel systems D1, D2
new N D System D with private
domain N
X(n) Module X with
parameters o

before rule after
RE N
{L? ¥-" R’} | <L ¥~ R> — {L}<L> [N~ J<R>{R*}
L N R
N R
RUN-
{L2}<L> [~ 1<R={R? {L* §~* B'} | <L ¥ B>
< @ L N R
[
£ YN r N R
RO
{L'}<I> [B]<H~ R>{N~#+ R'} s 2 {L'}I> [8 B-]<R>{R'}
% ¢ <+
{ > G
S 5t N-
o \\ Al #.
i
BMs
{L'}<L> [1]<8 B2>: — L)L [81 S1<B2>:
<Li>[8 52]<B>{R'} <1 8 [82]<R>{R'}
< <
< e « e N
S1 S sz 51 5 52
/517 5= 5p¢ st st st
S # & »
EDs
{L7}<L> [S1]<8 B>: <2 8 R2> |
<L2>[5]<R2>{R’} {L'kI> [51 B]<R>{R’}
<« L2 3 R2
< 57 ok < @
51<€ s §1 5
g1 gr sit sv
< # < P

rule condition before reduce after
RCAL 81} | <s2> B4 g <L{S1HSMR'I<E> | 52> B Gl [S1R)}<R>
RCA2 ¢ &5 gs1)y | <s2> Gl [81RI<R> B <Lo{S1}SIRI<R> | <52
RGB G| A 2} G? U1:G:U2 | A 2} UL:G’:u2
RGU ¢ 251 vi:e:v2 &5 vieivz 1
RGL G| A 2 Gr | A U1:G:U2 | A E} U1:G’:U2 | A
RG ¢ &% @ ut:e:vz 23 wnieriuz
3% D E D rev(D) ﬂ rev(D?)
RC D 2} D’ com(D) ﬂ com(D?)
RE Dpi=,022%p20= 01 nm B opi
rule condition before equal after
EC D1 1D2 =, D2|DL
EA D1 | (D2 | D3) (DL | D2) | D3
ED X(m) =D X(n) =, D{m:=n}
ENP N ¢ fn(D2) (new N D1) | D2 = new N (D1 | D2)
ENN new N1 new N2 D =, new N2 new N1 D
END N g fn(D) new N D =, D
EP D1 =, D1? D1 | D2 =, D1’ | D2
EN D=, D’ new N D - new N D’
EL G =, 6 G1:G G1:6?
ER G =, 67 G:GZ = G?:G2
EROTG ¢ =, rotate(C)
EROTA A =, rotate(A)
ESL {L17}<L1>[51]<R1>{R1’ 8} =,  {L1°}<L1>[S1]<R1>{R1’}
:{L27}<L2>[52]<R2>{R27} :{S L2?}<L2>[82]<R2>{R2’}
ESU {L17}<L1>[S1]1<R1 S>{R1’} = {L17}<L1>[S1]<R1>{R1’}
::{L27}<L2>[82]<R2>{R2’} ::{L2°}<8 L2>[s2)<R2>{R2’}

69
Lakin et al. Royal Society Interface, 2011



Compiling Chemistry to DNA (X=Y)

def R1xT(N,x,y) =
new a
(N* <tA a>
| N* <y tA>
| N* tA*:[x tA]:[a tA]:[a]
| N* [X]:[tA y]:[tA a]:tA*

—+
[n1}

-
+

def Species(N,x) =
N*<tA x>




Model-Checking Compilation (X—Y)

Transducer State Space (Species(1,x) | R1x1(1,x,y))

—2 (1) -2 (1) 2. (1)
L ¥ . (1) Ly (1) t ¥, (1)
* Lo (1) . (1) . (1)
P=0.333333333333333 * P=1
t x t a a Rate=0.0003 t x t a R Rare=0.0003 t x t a
T e T T (D T e . .~ (1 e
x L ¥y Lt 2 x L. ¥ &
x e - o
L 3. (1) 2 (1)
* (1) x Y. (1)
p=1
Rate=0.0003
Yy _Eo(1) yo_to(1) = x5 (1)
F=0.333333233333333
- -~ Rate=0.0003 . . . P=05 " . "
_r1. 2 (1) = =°=7 (1) Rate=0,0003 = =°=7: (1)
[ nd x* t= a* = a* =(,333333333333333 t* x* [ nd a~ t= a* t* x* = a* [ nd a*
x. .t v a _t, x Lt v a _t, ® y _ta _t
et () ettt () L=t ()
2. (1) L2a. (1) @ L1
(1) * 1) x__t. (1)
p=1 P=0.5
Rate=0.0003 Rate=0.0003 v
P=05 P=0.3 a
Rata=0.0003 Rat==0.0003 = (1)
- (1)



L

Stochastic Model Check

INg

PRISM results for sequential transducers

Probability

049

0.4

0.7

0.8

[=]
&

0.4

0.3

0.2

0.1

——— S

—

Y

¥

0

25,000 50,000 75,000 100,000

Time, T, T

125,000 150,000 175,000

= One (correct) —v= One {error) —=— Two (correct) —=— Two {error) —=— Three (comrect) — Three (errcr)

200,000
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Scaling Strand Displacement Circuits

Scaling Up Digital Circuit Scaling Up DNA Computation
Computation with DNA Strand John H_Bel

Displacement Cascades
Lulu Qian® and Erik Winfree”j*xg v :/ R \ “In addItIOI’l to

x yoy, = VR biochemistry laboratory
xz D%y . techniques, computer
muw n science techniques were
— Sy essential.”
= e “Computer simulations of

e seesaw gate circuitry

i / | optimized
o - the design and correlated

experimental data.”
3 JUNE 2011 WOL 332 SCIENCE JJUNE 2011 WOL 332 SCIENCE
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Turing-Powerful DNA Computers

Encoding a Stack

Encoding state transitions
Stack A = []::1 Bgpttm] —— l Inital complex - Input strand (1)
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Model-Checking a DNA Ripple Carry Adder

— —— bt Input A Input B Output X|Output C||Result
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Localised circuits

Hairpins tethered to origami

o Increased speed
o Reduced interference
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Conclusions




A Brief History of DNA

Turing Machine, 1936 Structural DNA, 1982

§0‘0‘0|0‘0\‘1|1‘B‘0|O§ B
(o DNA, -3,800,000,000 .J[_

Transistor, 1947 <—

L

(City encodings) (Hybridized DNA) \

Software Matterware??

Digita uters  systematic systematic DW“
Computer manipulation manipulation Molecular
programming of information of matter programming
20th century 21th century

Luca Cardelli 2012-06-18 77
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